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NONSTATIONARY FLOWS OF AN INCOMPRESSIBLE VISCOUS 

FLUID WITH MEMORY IN CYLINDRICAL TUBES 

A. D. Khon'kin UDC 533.6.011 

In aerohydromechanical problems, the motion of a viscous thermally conducting gas 
traditionally is studied with the use of the Navier-Stokes equations, which are the result 
of the phenomenological closure of the conservation laws on the basis of linear transfer 
relations connecting the flow of momentum and energy with the spatial gradients of velocity 
and temperature - that is the transfer laws of Navier-Stokes and Fourier. In the case of 
slow quasistationary processes, these laws are derived from the kinetic Boltzmann equation 
with the use of the Chapman-Enskog method [i]. However, it has been shown [2, 3] that in 
the case of rapid nonstationary motions of a viscous thermally conducting gas, the expressions 
for the momentum and energy flows should include not only terms with spatial gradients of 
the velocity and temperature, but also time derivatives (accelerations) of these variables, 
which characterize the effects of temporal memory. The generalized hdyrodynamic equations 
[2, 3], which are called hydrodynamic equations for rapid processes, have been used to in- 
vestigate the distribution of small perturbations, the structure of shock waves, diffusion, 
etc., and have been used to obtain a series of important results. 

In this article, these hydrodynamic equations of rapid processes are used to study t~e 
nonstationary motions of a viscous incompressible fluid in circular cylindrical tubes. 
Exact solutions are found and analyzed for i) the pulsating motion of the fluid due to a 
harmonically varying pressure gradient and 2) an instantaneously induced motion of an initial- 
ly quiescent fluid. 

i. For continuous media, the most general form of the laws of conservation of mass, 
momentum, and energy are written as 

Op Opu~ Oui Ou~ 
0-7" + ~ . ~  = O, p-.a-f + pub a~'--~ = 

Oe Oe Ou k 

ep et'~k 
Ox i ~x h '~ 

Ou~ OQh 

where p is the density; u i (i = i, 2, 3) are the velocity components along the x i axis of 
the Cartesian coordinate system (xl, x2, x3) ; p is the pressure, e is the internal energy; 
Pik is the momentum flux (stress tensor); and Qi is the thermal flux (energy flux). In 
order to obtain a closed system of equations from the conservation laws (I.i), the momentum 
and energy fluxes must be expressed in terms of parameters of the hydrodynamic state p, ui, 
and e. 
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Within the framework of Newtonian mechanics of continuous media, the phenomenological 
linear transfer equations of Navier-Stokes and Fourier are used: Pij =-~Dij, Qi = -18T/3xi- 

Ou i ~u~ __ Here B and I are the coefficients of viscosity and thermal conductivity; and D~j =~+ Ox--~ 
2 0 u k  I 

~-~6~j!is t h e  s t r a i n  r a t e  t e n s o r .  3 

I t  has  been  shown [3 ,  4] t h a t  t h e s e  laws c o r r e c t l y  d e s c r i b e  s low q u a s i s t a t i o n a r y  m o t i o n s  
and t h a t  f o r  d e s c r i b i n g  r a p i d l y  t i m e - v a r y i n g  p r o c e s s e s  t h e  l i n e a r  a l g e b r a i c  r e l a t i o n s  o f  t h e  
fluxes to the gradients should be replaced by differential relations 

( OPij OPi A 

(oQ~ OQ~ ~ or 
~ C~-  + ~ ~ ]  = _ Q~ - -  ~ ' 

where ~p and Tq are relaxation times. In the case of a monatomic perfect gas, Xp = B/P and 

�9 q = I/cpp, where Cp is the heat capacity at constant pressure. 

2. In order to obtain some idea on the changes which make use of the hydrodynamics of 
rapid processes as opposed to the Navier-Stokes hydromechanics, two problems of nonstationary 
hydrodynamics are examined in this section and the following sections. 

First we study the nonstationary motion of an incompressible viscous fluid through a 
circular cylindrical tube (for a classical formulation and solution, see [5]). For flows 
of an incompressible fluid, the total system of equations for the hydromechanics of rapid 
processes takes the form 

Ou~ [ Ou~ Oui~ Op OP~ 

The parameter �9 and the viscosity B are considered constant. We align the x 3 = z axis with 
the axis of the tube and the x z = x and x 2 = y axes in the plane of the transverse cross 
section. If we set ul = u2 = 0, and u 3 = w, the continuity equations give 8w/Sz = 0, and 
w = w(x, y). The remaining pair of equations gives 

pOw/Ot = --~p/Oz - -  OPzjOx - -  OPzy/Oy , 

(t + ~ o / o t ) p ~  = - ~  ((q) = (zx) o1: (zy)), 

from which it follows that 

( 
Here A 2 is the Laplacian operator in the plane transverse cross section, which in polar 

coordinates r, # gives 

0(0o) 
A2w=~-TF r W , 

because w does not depend on ~. Equation (2.1) is the basic equation for nonstationary 
motion of an incompressible viscous fluid with memory through a cylindrical tube. It makes 
it possible to find the distribution of the longitudinal velocity through a tube cross sec- 
tion for a given pressure gradient 8p/Sz as a function of time t. 

Now we examine a pulsating motion, which corresponds to a harmonic law for the change 
in the pressure gradient in the tube: -Sp/3z = oA cos ~t, where A = const. Then (2.1) takes 

the form 
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We will investigate the steady-state regime. The initial conditions now lose their 
meaning, and we need only satisfy the boundary condition of attachment at the wall: w = 0 

for r = a (a is the radius of the tube). We assume 

w(r, t) = u(r, t) q- (A/o)) sin ~t .  ( 2 . 2 )  

Then t h e  p rob l em r e d u c e s  t o  t h e  s o l u t i o n  o f  t h e  e q u a t i o n  

T o  v a (rOU ~ 

w i t h  t h e  bounda ry  c o n d i t i o n  
u(a, 0 = --(Aloe) sin cot, ( 2 . 4 )  

We apply the method of separation of variables in the form 

u(r, t) = Re[CR(r) exp (iet)] , (2.5) 

where C is a constant. From (2.3) and (2.5) it follows that 

r- l(rR')  ' + io:R ---- O, o; -- (co/v)(l -- io)~). ( 2 . 5 )  

The solution of (2.6) which is finite at r = 0 (the axis of the tube) has the form 

R(r)  = :o ( r  V T ~ ,  ( 2 . 7 )  

where  J o ( x )  i s  t h e  B e s s e l  f u n c t i o n  f o r  t h e  f i r s t  k ind  o f  z e r o  o r d e r  o f  t h e  complex a rgument  x 
[ 6 ] ,  which  i s  d e f i n e d ,  f o r  example ,  by t h e  s e r i e s  

o o  

So(Z) = Z !: 
h=o (2k!])" 

In  a c c o r d a n c e  w i t h  ( 2 . 6 )  and ( 2 . 7 ) ,  t h e  a rgument  x i s  r e p r e s e n t e d  as  x = r  ~f'/aa ---r (t + 

0~2~~ ~/4 exp Ii (~4 213)J (~3 = arctg o~-). C o n s e q u e n t l y  

= -r ~I +r ~ exp ik W - -  ~ " 

Thus, (2.7) has the form R(r) = Z0(r) - iZ~(r), where the real functions Z 0 and Z z are given 
by the series 

oo 
h 

and 

( - l )  / , h 
o~2T "~) sin k 

~-0 (2k!!) ~ 7 -  . �9 

We note that for T = 0 

and 

oo 

( r > ] , : o  = (. +/~ 
~=o (4nI:F =ber(r ) 

n=0 [(4n + 2)!!I 3 

where ber(x) and bei(x) are the Kelvin functions [6]. 

Now we write the solution of Eq. 
(2.5) with a complex constant C = C r 

b0'(rV ) 

(2.3) in the form of the real part of the expression 
+ iC i : 
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u(r, t) = (CrZ 0 + C~Z,) cos ~t + (C~Z o - -  CrZ,) sin ~t. 

From t h e  bounda ry  c o n d i t i o n  ( 2 . 4 )  i t  f o l l o w s  t h a t  

A Zla  
C~=-j z2 _~ z2 , Ci- A Zo~ 

Oa ~" --la O) 'Z 2 Zoa q- Z,a 
(Zo,~ = Zo(a), Z~ =- Za(a)). 

Substituting these rsults in (2.2) yields 

~v (r, t) = 1 ~ 
Zo~ -~ Zla 

Z1 a 
3 - -  2 + [ z o .  + z~ a Zo (r) 

Zla  "] 
- -  Z 0 (r) - -  = ~ Z~ (r) | s in  c0t 

Z0~ + Zla J 

Z~ "] COS (Otl 

+ 

( 2 . 8 )  

We note that for �9 = 0, Eq. (2.8) transforms into the corresponding solution of the 
Navier-Stokes equations [5]. In this case the hydrodynamics of rapid processes is identical 
to the hydrodynamics of a Newtonian fluid with a Maxwellian theological viscosity law. 

3. We will examine the problem of setting into motion an intially quiescent incompres- 
sible viscous fluid in a cylindrical tube by instantaneously applying a given pressure drop. 
The Navier-Stokes solution of this problem can be found in [7], for example. 

Within the framework of the hydrodynamics of rapid processes, the velocity w(r, t) along 
the z-axis first of all satisfies (2.1), in which 8p/Sz = -Ap/s (Ap is the pressure drop over 
a length s of the tube), however, the derivation of a unique solution requires one more 
initial condition in addition to the classical conditions w = 0 for t = 0 and w = 0 for r = a; 
for example the acceleration 3w/at for t = 0. This question will be examined in more detail 
later, after we solve the problem for arbitrary initial conditions. 

We write the solution to the problem 

Ow Ap _ 

in the form 
/ 

w ( r , t ) = u ( r , t ) + ~  t - -~-~- , ,  ( 3 . 1 )  

Then the function u satisfies the homogeneous equation 

(3.2) 

with the conditions 
a2AP( r~) 

u (a ,  t)  = O, u ( r ,  O) = - " ~ T  1 - ? -  �9 

have 
We use the method of separation of variables and assume u = T(t)R(r). 

T 

From (3.2) we 

(3 .3 )  

where the dots and primes denote derivatives with res_~t to t and r, respectively, and ~ is 
a positive constant. From (3.3) we findR(r) = J0(r~/9). Using the boundary condition 
R(a) = 0, we find that the parameter ~ can take on discrete values ~k = 9X~/a 2, k = i, 2, 3, 

..., where X k is a zero of the Bessel function J0(Xk) = 0. Now we follow the standard pro- 

cedure ~k + Tk + =kTk = 0 and T k = A k exp(slkt) + B k ex2(s2kt). Here Slk = (-i + /i- 4~k~)/ 

2~, and S2k = (-i - ~i - 4~k~)/2~. 
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Thus, 

u(r, t)= ~ [Ahexp(sa~.t) + Bhexp(s~t)l 3"o(~-~). ( 3 . 4 )  

According to the initial condition 

u(r, O) = a2AP I - -  = 

In order to determine the coefficient A k + Bk, we use the results of the theory of Fourier- 
Bessel series, according to which an arbitrary function f(x) of a real variable x can be 
represented in the form of a series 

where 

] (x) = ~] ak3.o (~,ux), ( 3 . 6 )  

1 2y a~ = [s~ ~ h ) P  x / ( z )  ,Z' o (~,~x) dz. 
0 

Equation (3.7) is a result of the orthogonality of Bessel functions: 

I 

2 
0 

( 3 .7 )  

where %k is a root of the equation Jv(%k) = 0. 

We multiply (3.5) by xJ0(XkX) , where x = r/a, and integrate over x from 0 to I. 
accordance with (3.7), we obtain 

i 

: ~ a2Ap f Ah + Bh 2~l [S~ (~k)] 2 ] (x - -  x 3) 3"o (~kx) dz. 
0 

I n  

( 3 . s )  

In calculating the integral in (3.8) we use the series representation of Jp(x): 

~ (_~)~ ( ~ ~2~+p 
]~ (x) = ~! (~ + p)! k T ]  ' 

8 : 0  

which we substitute into (3.8) and find 

1 ~ (x + x 3) 3 0 (~kx) dx 
0 s•o ~s :2s+s 2are (kk) = 2 ( - .  ,~ -. 

~,~ = s! (s + 2)! 2 T M  = ~,~ 

We substitute this result into (3.8), use the formula J2(x) = (2/X)Jl(X) - J0(x) with 
x = %k and the condition J0(%k) = 0, and have 

2a2AP (3.9) Ah + Bk = ~ZZ~S,~(Xh):' 

Finding an additional relationship between the constants A k and B k requires formulating 
one more initial condition, for example the value of the acceleration 8w/St at t = 0. In the 
case of Navier-Stokes hydrodynamics, this quantity is obtained as a result of the solution 

a w ~ t  It=o = Ap /p l ,  (3.  i 0 )  

where now it can be specified arbitrarily. In order to compare with the Navier-Stokesjsolu- 
tion, we formulate the missing condition in the form of (3.10). Then 

au I A, a-T ~:o = -P- /=  (A~sl~ + Bhs2~) Jo (Zax). ( 3 . 1 1 )  
k-~-z 
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We use the known formula ~ xJv(x)dx = xlv+ z(x) with ~ = 0, and find from (3.6) and (3.7) that 

I ---- -~ 2J~ (2~hx) (3.12) 
"~=z ~z (~) " 

According to (3.11) and (3.12) 
2Ap A~s~ + B~s~ = p~z (~). 

From Eqs. (3.9) and (3.13) we find the constants A k and Bk: 

2~ (~ + ~/=~) B~ = - 2~ (~ + ~/=~) 
A~= pZ~s~(~) ]/~ -a~,-~ ' ~ A ( ~ )  1 / ' - ~  

(3.13) 

We note that for 4ak~ > i, the quantities Szk and S2k are complex; nonetheless the ex- 

pression (3.4) remains real. This can be proved easily, noting that Slk = S2k. The corre- 

sponding terms of the series contain oscillating components with attenuation in the form 

"Vl l  - 4~,~,~ I exp(-- t/2"r)(a~cosc%t+ b~sino)ht), c% = 2~ 

Now we examine the case of small T's. We expand the results in a Taylor series and 
obtain 

sz~ = -- =k -- =]~ + O (~2), s2~.= -- "~-z + =k + 0 (~), 

AI~ -- 2hpa~ [i -}- O (,~2)], B~ = 2Apcch'r~ 
~z~s:~ (~,h) p~P~ (~,~) [J + o (~)1. 

Substituting these estimates into (3.1) and (3.4), we find to an accuracy O(~2): 

w(r't)= a2AP { r~ - } 
~=z z~A (~) 

We set  �9 = 0 and f ind  the Navier-Stokes so lu t ion  to the problem [7]: 

w(r,t)=aeAP[l_ r~ ~ J~ (Xh ~) exp ( _  ,~t/a2)] 
~-, 2,,V1 (2~k) 

Thus, for small values of ~, the difference between our solution and the Navier-Stokes 
solution is basically contained in the exponent (at least in terms of order less than T2). 
Expanding the exponent to terms of order T would give a secular term of the type Tt. 

i. 

2. 

3. 

4. 

. 
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EFFECT OF INSTABILITY ON BOUNDARY LAYER DETACHMENT 

V. A. Gudkov UDC 533.6o011 

When fluid or gas flows around a body, a thin boundary layers forms near its surface. 
The behavior of this boundary layer is determined by hydrodynamic resistance. If the 
boundary layer is detached from the surface, the resistance increases sharply [i, 2]. In 
order to reduce this resistance, the detachment must be stretched out; that is the boundary 
layer line detachment must be shifted as far as possible to the aft critical point, so that 
the region of stagnant flow (the wake) behind the body is narrowed. In this regard, inves- 
tigations of nonstationary fluid around a body are of current interest. The acceleration of 
a cylindrical body into a quiescent fluid has been examined [2]. Undetached flow around 
the body was observed immediately after the acceleration started. Then, after the cylinder 
traveled a distance s = 0.351 R (where R is the cylinder radius), the flow detached near the 
aft critical point of the body. The detachment gradually moved forward along the flow and 
increased the wake behind the body. After a certain time, a pair of vortices appeared be- 
hind the body, which grew and continually broke off to form a vortical wake. As measurements 
show [3], the hydrodynamic resistance coefficient is minimized in the case of undetached 
flow. This leads to the importance of investigating nonstationary flow around bodies. 

Currently, boundary layer dynamics for bodies accelerating into a flow of fluid or gas 
have not been studied enough. Here it must be kept in mind that acceleration into a quiescent 
fluid is different than into a flowing one, where, as a rule, the boundary layer detachment 
already exists, and it is necessary to follow its behavior as the body accelerates. 

It has been shown [i, 4] that for a nonstationary boundary layer, the velocity profile 
inside it is defined by the parameter 

where ~ is the boudnary layer thickness; v is the kinematic viscosity; U is the flow velocity 
at the boundary with the boundary layer; U' = 8U/Sx is the velocity gradient (x is the coordi- 
nate along the arc of the meridional cross section of the body); and U = 8U/St is the time 
derivative of the velocity (acceleration). This equation shows that the growth rate of the 
boundary layer, its structure, and the position of the detachment line will depend on the 
magnitude and sign of the relative acceleration U/U, which in the nonstationary boundary 
layer plays the same role as U'. 

The investigations were conducted in a hydrodynamic tunnel whose working section is a 
square channel 40 • 40 mm made of transparent material. A device which can accelerate the 
body into the flow is mounted in the working section (Fig. i). The device is constructed 
as follows. The flow body (a cylinder) 1 is fastened to the end of a steel tube 2, which 
passes through the body to the forward point on the cylinder. The tube carries water with 
a fluorescent dye to the forward point, in order to make the boundary layer visible. In 
turn, the tube 2 passes through a directing tube 3, which is rigidly fastened to a support 
4, which is fastened from two opposite sides to the channel walls 5. A mounting assembly 6 
is rigidly connected to the tube 2. A control thread 7 and the flow cylinder, are pulled 
back along guide wires 8, which prevent the cylinder form rotating around the axis, and 
stretch springs 9. At a given moment in time, the thread is broken and the flow body is 
accelerated by the compressing spring into the flow. 
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